
Year 10 Combined Science - Cycle 1	Week 1 - Mitosis	Week 2 - Stem cells and the nervous system			
 Key vocabulary Anion: negatively charged ion, one that has gained electron/s. Asexual: producing new organisms with one parent only. These organisms are genetically identical to their parent Cation: positively charged ion, one that has lost electron/s. Diploid: a cell or nucleus that has 2 sets of chromosomes Malleable: able to be hammered or rolled into shape. Meiosis: a form of cell division where one parent produces 4 haploid cells Neurone: Cells of the nervous system. 	 Mitosis is a form of cell division the produces two genetically identical, diploid daughter cells. The cells are diploid and the process is asexual. Produces body cells for growth and repair Interphase: DNA is replicated, happens first. Phases of Mitosis: prophase: nucleus starts to break down, spindle fibres appear. metaphase: chromosomes line up at the centre of cell. anaphase: spindle fibres contract and chromosomes separate. telophase: a membrane forms around each set of chromosomes to form nuclei. Finally, cytokinesis occurs - cell surface membrane forms (cell wall forms in plant cells). 	 Stem cells are cells that divide repeatedly and can then differentiate. They can be: embryonic: early embryo cells that can produce any cell type adult: can only produce one type of cell, allow tissues to grow and replace damaged cells Reflex arc: a neurone pathway consisting of a sensory neurone passing impulses to a motor neurone often via a relay neurone. Relay neurone: a short type of neurone found in the spinal cord and brain. Sensory neurone: a neurone that sends impulses from receptor cells to the central nervous system. Motor neurone: a neurone that sends impulses to effectors (muscles or glands). 			
Week 3 - Meiosis and DNA	Week 4 - Ionic bonding	Week 5 - Covalent bonding			
 Chromosomes are found in the nucleus of all cells. Human somatic cells contain 23 pairs (46 individual) chromosomes. They are made out of tightly coiled DNA and are divided into sections called genes. Genes code for the production of proteins in the body. An entire set of genes is called a genome. DNA is made up of 4 individual bases - A, T, C and G. The order of these bases determines the protein that is produced. Meiosis: a form of cell division in which produces gametes (sex cells - sperm and egg). One parent cell produces Four non-identical haploid daughter cells. These cells contain 23 individual chromosomes. Chromosomes in daughter cells contain different versions of same gene, resulting in genetic variation of offspring. 	 The transfer of electrons to gain a full outer shell forming oppositely charged ions that attract due to electrostatic forces of attraction Occurs between a metal and a nonmetal Forms substances with have high melting and boiling points. When ionic substances are molten or dissolved in solution they conduct electricity as the free electrons can carry a current. For a substance to conduct electricity: It must contain charged particles; These particles must be free to move. Ionic substances will not conduct electricity in their solid form because their ions are not free to carry the current. Transfer or sharing of electrons can be shown with a dot and cross diagram. Strong ionic bonds join many atoms together to form regular, repeating lattice structures. 	 Covalent bonding takes place to form atoms with a full outer shell. It occurs between a nonmetal and a nonmetal when a pair of electrons is shared between two atoms. The structure and bonding of substances results in different properties such as melting point and boiling point. Covalent substances typically have: low melting points; low boiling points; poor conductivity of electricity. Examples of simple covalent structures include: hydrogen, water, methane, oxygen and carbon dioxide. Monomers are small, simple molecules that can be joined together in a chain to form polymers. Carbon atoms can form up to 4 covalent bonds, forming long polymer chains. 			

Key vocabulary

- **Current, I:** the rate of flow of electrical charge, measured in Amperes (A).
- Potential difference (pd), V: amount of energy transferred per unit of charge, measured in Volts (V).
- **Resistance, R:** The opposition to the flow of electric charge, measured in Ohms (Ω).
- Circuit symbols:

Week 6 - Metallic bonding and Allotropes

- Atoms in metal pack closely together to form a giant lattice structure.
- Outer electrons are lost from metal atoms, forming a giant lattice of positive ions surrounded by delocalised electrons.
- Strong electrostatic attraction between the ions and electrons, resulting in metals having high melting and boiling points.
- Carbon atoms can form 4 covalent bonds and join in different structural ways. These are known as Allotropes of carbon. Examples are:
- Fullerenes: C bonded to 3 other C atoms. Often form nanotubes or "bucky balls". Weak intermolecular forces mean low melting points.
- **Graphene:** Thin layer of C atoms. Very light but very strong due to intramolecular forces.
- **Graphite and diamond:** giant mol. structure, very strong intramolecular forces, high melting point.

Week 9 - Investigating resistance

• **Potential difference (pd)** is the difference in energy carried by electrons before and after they flow through a component.

Week 8 - Current electricity

- Resistance occurs when charges collide with the particles which make up the wire. Electrical resistance causes wires to become hot.
- **Current/Potential difference (I/V) graphs** show the characteristic relationship between current and pd values for different components:
- **Fixed resistor**: *I* is directly proportional to *V* straight line **through** the origin.
- Filament lamp: resistance increases as the bulb gets hotter.
- Diode: Very low resistance if current flows in one direction, very high resistance if current flows in opposite direction.

•	Connect	up	а	circuit	of	а	power	supply,	an
	ammeter	and	а	fixed	resis	sto	r with	a voltme	eter
	connected in parallel across the resistor.								

- Connect a voltmeter across the resistor.
- Switch on the circuit and record the readings of **current** and **potential difference**.
- Repeat for a range of **pd settings** between 1 V and 6 V.
- Replace the resistor with 2 filament lamps and repeat steps 1-4.
- **Calculate** the **resistance** of the resistor and lamps using:

Resistance (Ω) = <u>potential difference (V</u>)

current (A)

 Ohm's Law: The current through a resistor is directly proportional to the pd across the resistor at a constant temperature.

- Rubbing two insulating materials together will build up of a static electric charge as negatively charged electrons are transferred.
- **Components** in an electric circuit can be represented using **circuit symbols**.
- Electrons carry the electric charge in an **electric current**. For a current to flow, the circuit must be complete.
- Current is always conserved in a circuit the current leaving the positive terminal and arriving at the negative terminal is the same.
- Series circuits: Current is the same through all components. Pd across the individual components in the circuit adds up to the total pd across the power supply.
- **Parallel circuits:** Current through the main circuit is divided across the separate branches. Pd across each branch isequal to the pd across the supply

Week 10 - Power and electrical safety

• Energy, *E*, transferred by a component can be calculated as:

Energy (J) = current (A) x pd (V) x time (s)

- The higher the **power** of an appliance, the more quickly it can transfer energy.
- Power, P, is calculated in the following ways:
 Power (W) = <u>Energy transferred (J)</u> time (s)

Power (W) = current (A) x pd (V)

- Power (W) = current² (A) x Resistance (Ω)
- Mains electricity in the UK is an alternating current with a frequency of 50 Hz and a peak voltage of 230 V.
- Electrical devices use **fuses**, **circuit breakers** and the **earth wire** as safety features.
 - Fuses **melt/blow** when the current through them is too high.