#### Year 8 - Combined Science - Cycle 1

# Week 1 - Describing waves

# Week 2 - Wave speed

### **Key vocabulary/content/ideas**

- Amplitude: maximum distance of a point on a wave from its rest position.
- Cell membrane: a thin barrier surrounding the cell, that controls what enters and leaves.
- Concentration: mass of a substance in a given volume.
- Eukaryote: An organism composed of cells which contain a true nucleus.
- Frequency, f: number of waves passing a point each second, measured in Hertz, Hz.
- **Period:** time taken for a wave to pass a point.
- Refraction: A change in direction as a wave moves from one transparent material to another.
- Reflection: the change in direction of a wave when it meets a surface.
- Wavelength: distance (m) from one point on a wave to the same point on the next wave.

- Waves transfer energy without transferring matter. They can be either:
  - Mechanical they need a medium to travel through e.g. sound waves or seismic waves.
  - Electromagnetic disturbances in electric and magnetic fields E.g. Light or X-rays.
- Waves can be described in terms of their Amplitude, Wavelength, Frequency and Period.
- **Transverse waves:** the direction of energy transfer is perpendicular (at right angles) to the direction the particles oscillate.
- Longitudinal waves: the direction of energy transfer is parallel to (in line with) the direction the particles oscillate.



- When waves meet they can combine in a process called superposition.
- If the peaks of 2 waves line up, it will produce a wave with a greater amplitude.
- If a peak and trough line up, it will produce a wave with a smaller amplitude.
- Waves will reflect of a solid surface. Reflection can be **Specular** or **Diffuse** depending on the surface.



Wave speed, v, can be calculated as:

v (m/s) = distance travelled by wave (m) time taken (s)

 $v(m/s) = wavelength, \lambda(m) \times frequency, f(Hz)$ 

We can investigate the properties of a wave using a **ripple tank**.

#### Week 4 - Sound waves

- **Sound waves** are caused by vibrating objects.
- The greater the amplitude of a sound wave, the greater volume of the sound.
- The greater the **frequency** of a sound wave, the higher the pitch of the sound.
- The range of human hearing is 20 Hz to 20 000 Hz. Frequencies above this range are called **Ultrasound**.
- Sound waves travel at different speeds depending on the medium. The speed of sound in air is 343 m/s.
- in direction of the path of a light ray. It occurs at the **boundary** between two mediums of different density as waves change

speed.

**Refraction** is a change



# Light is a form of wave that can transfer energy.

- It travels at 300 million m/s the speed of light.
- Light interacts with materials in different ways depending if the surface is:

Week 4 - Light waves

- **Transparent** all light will pass through.
- **Translucent** some light will pass through.
- Opaque no light will pass through.
- White light is made up of all the colours of the visible **spectrum**. It can be split using a **prism**.
- Different colours of light have different wavelengths and frequencies.
  - Light can be focused using lenses, such as those in cameras and your eyes.
- Ray diagrams are used to show the path of light rays.

## Week 4 - Cell transport

- Most Eukaryotic cells have the same organelles: nucleus, cytoplasm, cell membrane, mitochondria and ribosomes. Plant cells also have thick cell walls, chloroplasts and a permanent vacuole.
- Cells have a partially permeable membrane that allows some substances through it but not others.
- Dissolved substances move into and out of cells by diffusion.
- Substances will diffuse from an area of high concentration to an area of low concentration.
- A difference between two concentrations forms a concentration gradient.
- The greater the concentration gradient, the higher the rate of diffusion.
- Water moves in and out of cells by osmosis.
- During osmosis, water molecules move from where there are more of them (a higher concentration) to where there are fewer of them (a lower concentration).

#### Key vocabulary/content/ideas

/ideas Week 6 - Atoms, elements and compounds

Week 7 - Atomic structure

subatomic particles each element has.

the atomic number from the atomic mass.

You can use a periodic table to find the number of

The atomic mass number = the number of protons

To find the **number of neutrons** in an atom subtract

The atomic number = the number of protons and is

also the same as the number of electrons. This is

- Field: An area around an object where it can exert o force on another object.
- Magnetism: a non-contact force which can affect certain metals.
- **Non-contact force:** a force that acts on an object with no physical contact.
- Nucleus: small, dense region consisting of protons and neutrons at the center of an atom.
- **Particle:** the smallest unit of matter that all materials are made up from.
- **Periodic table:** a chart in which the elements are arranged in order of increasing atomic number.
- **Physical Property:** Melting/boiling point, conductor/insulator, brittle/flexible.
- **Proton:** a positively charged particle found in the nucleus of an atom.
- Reactivity: a measure of how much a substance chemically reacts when it is mixed with another substance.

- All substances are made up of **atoms**. Different substances are made up of different types of atom.
- A substance composed of only one type of atom is known as an **element**. E.g. oxygen, carbon, iron, gold.
- Elements are found on the **periodic table of elements** and are represented by symbols. E.g. Carbon = C.
- A substance made up of 2 or more elements chemically combined is known as a compound. E.g. magnesium oxide is composed of magnesium and oxygen atoms.
- Atoms are made up of three smaller parts (called subatomic particles) : protons, neutrons and electrons.



and neutrons.

- Electrons are arranged in shells or orbits around the nucleus.
- Each shell can hold a certain number of electrons.

#### Week 8 - Reactivity Series

• The **reactivity series** shows metals in order of their

reactivity.

potassium sodium calcium reactivity magnesium aluminium carbon zinc iron tin increasing lead hydrogen copper silver gold platinum

**Displacement reactions** are when a more reactive element takes the place of a less reactive element in a compound

#### Week 9 - Extracting Metals

- Metals can be extracted from **ores** (compounds) found in the Earth's **crust**. Depending on their reactivity we can extract them in different ways.
- Metals that are less reactive than aluminium are extracted by heating them with carbon as a displacement reaction. This means the metal is removed from the compound and replaced with carbon.
- Metals that are more reactive than aluminium cannot be reacted with carbon so are extracted using electrolysis.
- Unreactive metals are found in the Earth's crust as the uncombined elements. Examples of unreactive metals are silver, gold and platinum.
- Different materials are useful due to their **properties**:
- **Ceramics:** Hard-wearing, brittle, heat-resistant.
- **Polymers:** Light weight, strong, can be moulded.
- Composites: Relates to properties of components -High strength, waterproof, light weight

## Magnetic materials include iron, cobalt and nickel.

A **magnetic field** is an invisible force field which surrounds a magnet.

Week 10 Magnetism

- All magnets have a **north** and **south pole**. The magnetic field is strongest at the poles of a magnet.
- Like poles (E.g. north and north) will attract.
  - Opposite poles (E.g. north and south) will repel.
- It is possible to create a magnetic field by passing a current through a wire. This is called an electromagnet.
- Electromagnets are used in speakers and door locks.
  - The Earth is surrounded by a magnetic field which can be used for Navigation with a compass.

